教师队伍
当前位置: 首页 > 师资情况 > 教师队伍 > 正文
韩志强
研究员

博士生导师
电话:+86-10-62794616
电子邮箱:zqhan@tsinghua.edu.cn
办公地址:清华大学李兆基科技大楼A238
韩志强,博士,清华大学材料学院,研究员,博士生导师。中国铸造协会挤压铸造工作委员会副主任委员,中国机械工程学会特种铸造及有色合金技术委员会委员,美国矿物、金属、材料学会(TMS)集成计算材料工程(ICME)委员会委员。面向汽车、航天等领域装备轻量化需求,开展铝、镁合金先进铸造成形技术及宏/微观建模仿真的理论与应用研究。近年来主持和参与国家自然科学基金航天联合基金重点、国家科技重大专项、国家重点研发计划、国际科技合作、行业骨干企业科研项目20余项。在铝、镁合金材料工艺、过程测试、多尺度全过程建模与仿真等方面取得多项创新成果。以主要完成人获省部级科技奖励2项。在清华大学面向本科生和研究生开设《材料加工传输原理》、《近净成形先进技术》、《材料加工系列实验》等课程。两次获得清华大学优秀班主任一等奖。获清华大学优秀博士学位论文指导教师称号。

展开更多>>
  • 教育背景
  • 工作履历
  • 研究领域
  • 研究概况
  • 奖励与荣誉
  • 学术成果

西安交通大学机械工程系,博士,1997

西安交通大学机械工程系,硕士,1993

哈尔滨工业大学金属材料及工艺系,学士,1990

2022-今  清华大学材料学院,研究员、博士生导师

2006-2022 清华大学机械工程系、材料学院,助理研究员、副研究员、博士生导师

2002-2005 英国Swansea University, Research Officer

2000-2002 清华大学机械工程系,博士后

1998-2000 北京科技大学冶金学院,博士后


1. 铸造工艺与设备

2. 轻量化材料与工艺

3. 材料基因工程关键技术和集成计算材料工程


面向汽车、航天等领域装备轻量化需求,开展铝、镁合金先进铸造成形技术及宏/微观建模仿真的理论与应用研究。近年来主持和参与国家自然科学基金航天联合基金重点、国家科技重大专项、国家重点研发计划、国际科技合作、行业骨干企业科研项目20余项。


代表性研究项目:

1. 国家自然科学基金-航天先进制造联合基金,重点项目,高性能镁合金航天构件铸造和热处理过程多尺度全流程建模仿真与形性调控,2018-2021。

2. 国家科技重大专项“高档数控机床与基础制造装备”课题,3500吨高效智能挤压成形装备及工艺的示范应用,2019-2020。

3. 国家科技重大专项“高档数控机床与基础制造装备”课题,航天复杂薄壁轻合金构件精密成形装备示范线,2017-2019。

4. 国家重点研发计划“材料基因工程关键技术与支撑平台”重点专项,轻质高强镁合金集成计算与制备,2016-2020。

5. 国家自然科学基金,面上项目,耦合热力学和动力学计算的挤压铸造镁合金共晶和析出相的建模与仿真研究,2012-2015。

6. 国家自然科学基金,面上项目,瞬态压力下合金凝固过程的宏观-微观-纳米多尺度建模与计算研究,2009-2011。

7. 国家自然科学基金,面上项目,轻合金液态挤压成形过程复杂凝固和力学问题的耦合建模与仿真研究,2007-2009。


1. 机械工业科学技术奖科技进步二等奖(2022)

2. 高等学校科学研究优秀成果奖科技进步二等奖(2018)

3. 清华大学优秀博士学位论文指导教师(2019)

4. 清华大学优秀班(级)主任一等奖(2013)

5. 清华大学优秀班(级)主任一等奖(2009)


代表性研究论文:

1. The microstructure, fracture mechanism and their correlation with the mechanical properties of as-cast Mg-Nd-Zn-Zr alloy under the effect of cooling rate, Materials Science and Engineering A, 2021, Vol.801, 140382.

2. Phase-field simulation on the influence of cooling rate on the solidification microstructure of Mg-Gd-Y ternary magnesium alloy, Rare Metal Materials and Engineering, 2020, Vol. 49, No.11, 3709-3717.

3. Study on the relationship between interfacial heat transfer coefficient and interface pressure in squeeze casting by using microscopic contact model, International Journal of Thermal Sciences, 2020, Vol.152, 106300.

4. Experimental study and cellular automaton simulation on solidification microstructure of Mg-Gd-Y-Zr alloy, Rare Metals, 2019. doi.org/10.1007/s12598-019-01355-7.

5. Characterization on the three-dimensional morphology and microstructure of eutectics in as-cast Mg-Gd-Y-Zr alloys by using X-ray tomography technique, Materials Characterization, 2019, Vol.158, 109933.

6. On the interfacial heat transfer and pressure transmission in squeeze - a case study of the sensitivity to materials, International Journal of Heat and Mass Transfer, 2019, Vol.133, 52-61.

7. In-situ observation and phase–field simulation on the influence of pressure rate on dendritic growth kinetics in the solidification of succinonitrile, Journal of Materials Science, 2019, Vol.54, 3111–3124.

8. Study on the response of dendritic growth to periodic increase-decrease pressure in solidification via in situ observation using succinonitrile, Journal of Crystal Growth, 2018, Vol. 498, 85-92.

9. Phase-field modeling on effect of pressure on growth kinetics of Mg-Al-Sn alloy, Materials Science and Technology, 2018, Vol.34, No.11, 1362-1369.

10. Experimental study on the effect of cooling rate on the secondary phase in as-cast Mg-Gd-Y-Zr alloy, Advanced Engineering Materials, 2017, Vol.20, No.3, 1700717.

11. Experimental study on the heat transfer behavior and contact pressure at the casting-mold interface in squeeze casting of aluminum alloy, International Journal of Heat and Mass Transfer, 2017, Vol.112, 1032-1043.

12. A phase field model coupled with pressure-effect-embedded thermodynamic modeling for describing microstructure and microsegregation in pressurized solidification of a ternary magnesium alloy, Computational Materials Science, 2017, Vol.136, 264-270.

13. Study on dendritic growth in pressurized solidification of Mg-Al alloy using phase field simulation, Journal of Materials Science and Technology, 2016, Vol.32, 68-75.

14. Microstructure characteristics and effect of aging process on the mechanical properties of squeeze-cast AZ91 alloy, Journal of Alloys and Compounds, 2015, Vol.641, 56-63.

15. Large-scale three-dimensional phase-field simulation of multi-variant β-Mg17Al12 in Mg–Al-based alloys, Computational Materials Science, 2015, Vol.101, 248-254.

16. Three-dimensional phase-field simulation and experimental validation of β-Mg17Al12 phase precipitation in Mg-Al-based alloys, Metallurgical and Materials Transactions A, 2015, Vol.46A, 948-962.

17. Study on pressurized solidification behavior and microstructure characteristics of squeeze casting magnesium alloy AZ91D, Metallurgical and Materials Transactions B, 2015, Vol.46B, 328-336.

18. A phase field model for simulating the precipitation multi-variant β-Mg17Al12 in Mg-Al based alloys, Scripta Materialia, 2013, Vol.68, No.9, 691-694.

19. A quantitative model for describing crystal nucleation in pressurized solidification during squeeze casting, Scripta Materialia, 2012, Vol.66, No.5, 215-218.

20. Study on the effect of pressure on the equilibrium and stability of the solid-liquid interface in solidification of binary alloys, Science China Technological Sciences, 2011, Vol.54, No.2, 479-483.


Copyright © 2020 清华大学材料学院 All Rights Reserved. 地址:清华大学材料学院 逸夫技术科学楼 100084