学术活动
学术活动
当前位置: 首页 > 学术活动 > 学术活动 > 正文
清华大学材料科学与工程研究院《材料科学论坛》学术报告:Principles and Biomedical Applications of Plasmon Enhanced Luminescence Upconversion

清华大学材料科学与工程研究院《材料科学论坛》

学术报告

报告题目:Principles and Biomedical Applications of Plasmon Enhanced Luminescence Upconversion

报告人:Prof. Won Park(University of Colorado Boulder)
      
报告时间:2018年6月27日(星期三)上午10:00

报告地点:清华大学逸夫技术科学楼A205报告厅

联系人:周济老师  62772975

报告人简介:
Dr. Wounjhang (Won) Park received his Ph.D. from Georgia Institute of Technology. He then worked as Post-Doctoral Fellow and Research Scientist II at the Georgia Tech Research Institute until he joined the faculty of University of Colorado Boulder where he is currently Sheppard Professor of Electrical, Computer and Energy Engineering, Materials Science and Engineering Program and University of Colorado Cancer Center. Dr. Park’s research interest is mainly in the light-matter interaction in nanostructures. Current research focuses on the thermal radiation engineering for energy harvesting, plasmonic nanostructures for cancer detection and therapy and mid-infrared photonic devices. Dr. Park has published over 100 peer-reviewed technical articles and 4 invited book chapters and holds 5 U.S. patents. He is the recipient of Ruth L. Kirschstein NRSA Senior Fellowship in Cancer Nanotechnology from the National Institute of Health, and the Provost’s Faculty Achievement Award from the University of Colorado Boulder.


报告摘要:
Storing a significant fraction of energy in electron gas, surface plasmon offers a highly effective mechanism for strong localization of light and local field enhancement. Naturally there has been extensive research worldwide for their applications in various fields of photonics and optics. One of the latest emerging frontiers in plasmonics research is the study of plasmonic enhancement of nonlinear optical processes. Among them, luminescence upconversion has attracted much interest. In contrast to the nonlinear susceptibility based frequency conversion processes, luminescence upconversion is efficient even when excited by incoherent light with low intensity. This prompted much interest for potential applications in solar energy conversion and bioimaging.
In this talk, I will start with an introduction to surface plasmon and frequency upconversion processes and then present the electrodynamic principles governing the luminescence upconversion process in a plasmonic nanostructure. I will then present our spectroscopic studies on the plasmon enhanced luminescence upconversion, which allowed us to quantitatively determine the contributions by all processes involved in the luminescence upconversion. Finally, I will present a new therapeutic approach for bladder cancer based on plasmon-upconversion nanoclusters. Biological tissue is highly transparent to the near-infrared light. By using plasmon-upconversion nanoclusters excited by near-infrared light, one can detect cancer cells via upconversion luminescence and also selectively ablate cells with minimal damage to surrounding tissue. It is also possible to perform photothermal and photodynamic dual therapy. For this, we developed techniques of synthesizing plasmon-upconversion nanoclusters and bioconjugation with antibody to epidermal growth factor receptor for cancer targeting. I will show the latest results from our in vitro and in vivo experiments, which clearly show the potential of this approach.






 

Copyright © 2020 清华大学材料学院 All Rights Reserved. 地址:清华大学材料学院 逸夫技术科学楼 100084