Location: Home > Faculty&Staff > Faculty
WANG Chang-An

Professor    Ph.D

Address:Yi Fu Science and Technology Building, Rm. B433, Tsinghua University

WANG Chang-An is a tenured professor in School of Materials Science and Engineering at Tsinghua University. He received his B.S. in 1992 and Ph.D in 1997 at Tsinghua University. From 2001~2002, he was a post-doctor in Georgia Institute of Technology, USA. He is a Co-Editor-in-chief of International Journal of Applied Ceramic Technology, Associated Editor of Frontiers of Materials Science, Editorial board member of Journal of Advanced Ceramics, Journal of the Chinese Ceramic Society and Journal of Ceramics. His research is highly focused on advanced ceramics and ceramic matrix composites, energy storage materials (solid state electrolytes and electrode materials for lithium ion batteries) and catalytic materials.

Education Background

B.S.    Tsinghua University, Beijing    1992

M.S.    Tsinghua University, Beijing    1994

Ph.D.  Tsinghua University, Beijing   1997

Work Resume

Lecturer    Tsinghua University, Beijing   1997-2000

Associate Professor     Tsinghua University, Beijing   2000-2005

Post-doctorate research fellow     Georgia Institute of Technology, USA    2001-2002

Professor    Tsinghua University, Beijing   2005-

Research Field

Structural Ceramics and Ceramic Matrix Composites

Porous Ceramics

New Energy Storage Materials (Lithium batteries, supercapacitors)

Catalytic Materials

Awards And Honors

2nd-class award of Science and Technology    Ministry of Education, China    1998

2nd-class award of Science and Technology    Beijing Ministry of Science and Technology    1998

2nd-class award of Science and Technology    Beijing Ministry of Science and Technology    2003

2nd-class award of Science and Technology    Beijing Ministry of Science and Technology    2005

2nd-class award of Science and Technology    China Materials Research Society  2013

3rd-class award of Science and Technology     Ministry of Science and Technology of Henan province  2015

Academic Achievements

【selected publication】

(1). Hollow-grained “Voronoi foam” ceramics with high strength and thermal superinsulation up to 1400 C, Materials Today, 2021, 46: 35 (https://doi.org/10.1016/j.mattod.2021.02.003)

(2). Strong metal-support interactions induced by an ultrafast laser. Nature Communications, 12, 6665 (2021) (DOI: 10.1038/s41467-021-27000-5)

(3). Constructing the lithium polymeric salt interfacial phase in composite solid-state electrolytes for enhancing cycle performance of lithium metal batteries, Chemical Engineering Journal, 442 (2022) 136154 (DOI: 10.1016/j.cej.2022.136154)

(4). Excellent Li/Garnet Interface Wettability Achieved by Porous Hard Carbon Layer for Solid State Li Metal Battery, Small, 2022, 18, 2106142 (DOI: 10.1002/smll.202106142)

(5). Nanosecond Laser Cleaning Method to Reduce the Surface Inert Layer and Activate the Garnet Electrolyte for a Solid-State Li Metal Battery, ACS Appl. Mater. Interfaces, 2021, 13, 37082 (DOI: 10.1021/acsami.1c08509)

(6). High-Energy-Density Solid-Electrolyte-Based Liquid Li-S and Li-Se Batteries, Joule, 4 (1): 262-274 (2020) (DOI: 10.1016/j.joule.2019.09.003)

(7). Molten Lithium-Brass/Zinc Chloride System as High-Performance and Low-Cost Battery, Matter, 3 (2020) 1714-1724 (DOI: 10.1016/j.matt.2020.08.022)

(8). An intermediate temperature garnet-type solid electrolyte-based molten lithium battery for grid energy storage, Nature Energy, 2018, 3(9): 732 (DOI: 10.1038/s41560-018-0198-9)

(9). Smart tuning of 3D ordered electrocatalysts for enhanced oxygen reduction reaction, Applied Catalysis B: Environmental, 219: 640-644 (2017) (DOI: 10.1016/j.apcatb.2017.08.017)

(10). Double-oxide sulfur host for advanced lithium-sulfur batteries, Nano Energy, 2017, 38: 12-18. (DOI: 10.1016/j.nanoen.2017.05.041)

(11). Rational design of sandwich-like MnO2-Pd-CeO2 hollow spheres with enhanced activity and stability for CO oxidation, Nanoscale, 2019, 11: 6776 (DOI: 10.1039/c9nr01737b)

(12). Realizing highly reversible and deeply rechargeable Zn anode by porous zeolite layer, Journal of Power Sources, 2022, 540(23): 231659 (DOI: 10.1016/j.jpowsour.2022.231659)

(13). Microstructure and properties of porous Si3N4 ceramics by gelcasting-self-propagating high-temperature synthesis (SHS). Journal of Advanced Ceramics, 2022, 11(1): 172 (DOI: 10.1007/s40145-021-0525-7)

(14). Preparation and characteristics of highly porous BN-Si3N4 composite ceramics by combustion synthesis, Journal of the European Ceramic Society, 2022, 42, 4835 (DOI: 10.1016/j.jeurceramsoc.2022.05.022)

(15). Highly Dispersed Pt3Co Nanocatalysts Embedded in Porous Hollow Carbon Spheres with Efficient Electrocatalytic O2 Reduction and H2 Evolution Activities, ACS Applied Energy Materials, 2022, 5, 4496-4504 (DOI: 10.1021/acsaem.1c04081)

(16). An integrated solvent-free modification and composite process of Li6.4La3Zr1.4Ta0.6O12/ Poly(ethylene oxide) solid electrolytes: Enhanced compatibility and cycle performance, Journal of Power Sources, 2021, 492: 229672 ( DOI: 10.1016/j.jpowsour.2021.229672)

(17). Solvent-Free Process for Blended PVDF-HFP/PEO and LLZTO Composite Solid Electrolytes with Enhanced Mechanical and Electrochemical Properties for Lithium Metal Batteries, ACS Applied Energy Materials, 2021, 4(10): 11802 (DOI: 10.1021/acsaem.1c02566)

(18). In Situ Electrode Stress Monitoring: An Effective Approach to Study the Electrochemical Behavior of a Lithium Metal Anode, ACS Applied Energy Materials, 2021, 4, 3993-4001 (DOI: 10.1021/acsaem.1c00353)

(19). Highly elastic and low resistance deformable current collectors for safe and high-performance silicon and metallic lithium anodes, Journal of Power Sources, 2021, 511, 230418 (DOI: 10.1016/j.jpowsour.2021.230418)

(20). Enhanced Performance of Li6.4La3Zr1.4Ta0.6O12 Solid Electrolyte by the Regulation of Grain and Grain Boundary Phases, ACS Applied Materials Interfaces, 2020, 12 [50]: 56118 (DOI: 10.1021/acsami.0c18674)

(21). Flower-like Hollow MoSe2 Nanospheres as Efficient Earth-Abundant Electrocatalysts for Nitrogen Reduction Reaction under Ambient Conditions, Inorganic Chemistry, 2020, 59: 12941 (DOI: 10.1021/acs.inorgchem.0c02058)

(22). Blending Poly(ethylene oxide) and Li6.4La3Zr1.4Ta0.6O12 by Haake Rheomixer without any solvent: A low-cost manufacture method for mass production of composite polymer electrolyte, Journal of Power Sources, 2020, 451: 227797 (DOI: 10.1016/j.jpowsour.2020.227797)

(23). Submicronic spherical inclusion black pigment by double-shell reaction sintering, Journal of the American Ceramic Society, 2020, 103(3): 1520 (DOI: 10.1111/jace.16911)

(24). Preparation of near net size porous alumina-calcium aluminate ceramics by gelcasting-pore-forming agent process, Journal of the American Ceramic Society, 2020, 103 (8): 4602 (DOI: 10.1111/jace.17075)

(25). Preparation and characterization of monodispersed spherical Fe2O3@SiO2 reddish pigments with core-shell structure, Journal of Advanced Ceramics, 2019, 8 (1): 39 (DOI: 10.1007/s40145-018-0289-x)

(26). A dopamine modified Li6.4La3Zr1.4Ta0.6O12/PEO solid-state electrolyte: Enhanced thermal and electrochemical properties, Journal of Materials Chemistry A, 2019, 7: 16425 (DOI: 10.1039/c9ta03395e)

(27). A monocrystal Fe3O4@ultrathin N-doped carbon core/shell structure: from magnetotactic bacteria to Li storage, Journal of Materials Chemistry A, 2019, 7[36]: 20899 (DOI: 10.1039/c9ta07002h)

(28). Brownian-snowball-mechanism- induced hierarchical cobalt sulfide for supercapacitors, Journal of Power Sources, 2019, 412: 321 (DOI: 10.1016/j.jpowsour.2018.11.055)

(29). Highly dense perovskite electrolyte with a high Li+ conductivity for Li–ion batteries, Journal of Power Sources, 2019, 429: 75 (DOI: 10.1016/j.jpowsour.2019.04.117)

(30). Defocused laser ablation processA high-efficiency way to fabricate MoO3Mo integrative anode with excellent electrochemical performance for lithium ion batteries, Journal of Alloys and Compounds, 2019, 787: 295 (DOI: 10.1016/j.jallcom.2019.02.051)

(31). Designing pinecone-like and hierarchical manganese cobalt sulfides for advanced supercapacitor electrodes, Journal of Materials Chemistry A, 2018, 6 (26): 12782 (DOI: 10.1039/c8ta02438c)

(32). Enhanced anti-deliquescent property and ultralow thermal conductivity of magnetoplumbite-type LnMeAl11O19 materials for thermal barrier coating, Journal of the American Ceramic Society, 2018, 101(3): 1095 (DOI: 10.1111/jace.15285).

(33). A new binder-free and conductive-additive-free TiO2/WO3-W integrative anode material produced by laser ablation, Journal of Power Sources, 2018, 378: 362 (DOI: 10.1016/j.jpowsour.2017.12.063)

(34). In situ preparation of a binder-free nano-cotton-like CuO-Cu integrated anode on a current collector by laser ablation oxidation for long cycle life Li-ion batteries, Journal of Materials Chemistry A, 2017, 5 (37): 19781 (DOI: 10.1039/c7ta04660j).

(35). A soft non-porous separator and its effectiveness in stabilizing Li metal anodes cycling at 10 mA cm-2 observed in situ in a capillary cell. Journal of Materials Chemistry A, 2017, 5: 4300 (DOI: 10.1039/c7ta00069c)

(36). Li-Ion Conduction and Stability of Perovskite Li3/8Sr7/16Hf1/4Ta3/4O3, ACS Applied Materials Interfaces, 2016, 8(23): 14552 (DOI: 10.1021/acsami.6b03070)

(37). Design and Preparation of MnO2/CeO2−MnO2 Double-Shelled Binary Oxide Hollow Spheres and Their Application in CO Oxidation, ACS Applied Materials Interfaces, 2016, 8: 8670 (DOI: 10.1021/acsami.6b00002)

(38). Honeycomb-alumina supported garnet membrane: Composite electrolyte with low resistance and high strength for lithium metal batteries, Journal of Power Sources, 2015, 281: 399 (DOI: 10.1016/j.jpowsour.2015.02.024)

(39). Excess lithium salt functions more than compensating for lithium loss when synthesizing Li6.5La3Ta0.5Zr1.5O12 in alumina crucible, Journal of Power Sources, 2014, 260: 109 (DOI: 10.1016/j.jpowsour.2014.02.065)

(40). High Li+ conduction in NASICON-type Li1+xYxZr2-x(PO4)3 at room temperature, Journal of Power Sources, 2013, 240: 50 (DOI: 10.1016/j.jpowsour.2013.03.175)

(41). Hierarchically porous Co3O4 hollow spheres with tunable pore structure and enhanced catalytic activity, Chemical Communications, 2013, 49 [67] 7427 (DOI: 10.1039/c3cc43094d).

(42). Ionic distribution and conductivity in lithium garnet Li7La3Zr2O12, Journal of Power Source, 2012, 209: 278 (DOI: 10.1016/j.jpowsour.2012.02.100)

(43). Optimizing Li+ conductivity in a garnet framework, Journal of Materials Chemistry, 2012, 22 [30]: 15357 (DOI: 10.1039/c2jm31413d)

Copyright © 2020 School of Materials Science and Engineering, Tsinghua University All Rights Reserved.