学术活动
学术活动
当前位置: 首页 > 学术活动 > 学术活动 > 正文
清华大学材料科学与工程研究院《材料科学论坛》学术报告:Imaging ferroelastic domain dynamics with nanoscale X-ray diffraction at the MAX IV synchrotron

报告题目:Imaging ferroelastic domain dynamics with nanoscale X-ray diffraction at the MAX IV synchrotron

报告人:Prof. Jesper Wallentin, Lund University, Sweden

报告时间:2022/11/8 16:00-17:00

参会方式:Zoom线上会议 (https://lu-se.zoom.us/my/jesperwallentin)

联系人:李千老师

欢迎广大师生踊跃参加!


报告摘要:

Metal halide perovskites (MHPs) have shown impressive results in solar cells, light emitting devices, and scintillator applications, but basic questions regarding its complex structure are still open [1]. The low symmetry of MHP crystal structures allows the formation of ferroelastic domains, whose ferroelectric nature is debated. Ferroelastic and ferroelectric materials show nanoscale domains with typical sizes ranging from 10 to 1000 nm. Imaging dynamics of ferroic domains require an experimentally challenging combination of high spatial resolution, strain sensitivity and long penetration depth. Here, I will give a brief introduction to nanoscale synchrotron X-ray diffraction methods, and an update of the status of the 4th-generation synchrotron MAX IV in Lund, Sweden (https://www.maxiv.lu.se/).

We have developed nanoscale X-ray diffraction methods to study the dynamics of ferroelastic domains within MHP nanostructures, made available by recent developments in X-ray optics and synchrotron sources. CsPbBr3 nanowires were imaged across the orthorhombic to tetragonal crystal phase transition using in situ temperature-dependent nanofocused scanning X-ray diffraction, with the 60 nm beam at the NanoMAX beamline, MAX IV [2]. The formation of highly organized domain pattern near 80 °C revealed the ferroelastic nature of the domains. To achieve improved temporal resolution, we used the newly developed Full-Field Diffraction X-ray Microscopy technique, available at the ID01 beamline, ESRF, France, to probe the domain evolution at 6 s time resolutions [3] . Twinned ferroelastic domains in single 500 nm CsPbBr3 particles were studied with 3D Bragg coherent x-ray diffraction imaging [4]. A preferential double-domain structure was revealed, with one domain oriented along the [110] and the other along the [002] direction. These results demonstrate that X-ray methods now offer sufficient spatial resolution to image ferroic domains, allowing for in situ studies of their formation and dynamics in realistic conditions.

报告人简介:

Jesper Wallentin is an Associate Professor at the division for Synchrotron Radiation Research at Lund University, Sweden. He did his PhD in Lund, and then a postdoc at the University of Göttingen in Germany. His research concerns the intersection of nanoscience and X-ray science, both developing X-ray methods to investigate nanostructured devices, and developing nanostructured X-ray detectors. His group has a strong collaboration with the NanoMAX beamline at MAX IV, but also visits many other synchrotrons for experiments. Recently, his group has synthesized single crystal MHP nanowires for X-ray scintillation detection.

Home page: https://www.sljus.lu.se/staff/jesper-wallentin/

Copyright © 2020 清华大学材料学院 All Rights Reserved. 地址:清华大学材料学院 逸夫技术科学楼 100084