清华大学材料学院

                                       School of Materials Science and Engineering

沈 洋

博士,副教授,副院长(教学)

国家杰出青年基金获得者,“长江学者奖励计划”青年学者

Editor Applied Surface Science

Associated Editor Science Bulletin

每年招收1-2名博士生,欢迎报考。

教育背景

1998/09-2002/08 清华大学材料科学与工程系, 学士

2002/09-2007/01 清华大学材料科学与工程系,博士

工作履历

2007/02-2009/08 美国加州大学圣巴巴拉分校材料系 (Materials Department, University of California, Santa Barbara),博士后

2009/08-2010/12 哈佛大学工程与应用科学学院 (School of Engineering and Applied Sciences, Harvard University),博士后

2011/01-2011/11 清华大学材料科学与工程系助理研究员

2011/12-2015/12 清华大学材料学院副研究员

2011/07-2016/12 清华大学材料学院(原材料系)党委研究生工作组组长

2016/01-至今     清华大学材料学院副教授

学术兼职

期刊审稿人:Nature Communications, Advanced Materials, Advanced Functional Materials, Journal of Applied Physics, Journal of Materials Chemistry, Journal of the American Ceramics Society, Dalton Transactions, RSC Advances, Journal of Alloys and Compounds

社会兼职

2014/11-至今    清华大学校友总会青年学术交流协会副秘书长

2014/12-至今    中国材料研究学会青年工作委员会理事

2017/04-至今    中国物理学会电介质物理专业委员会委员

2017/11-至今    中国复合材料学会介电高分子复合材料与应用专业委员会常务副主任

研究领域

关注聚合物复合材料结构-性能关联,通过显微结构设计实现聚合物复合材料中电、磁、光等性能的集成与耦合,重点对其电子限域极化及离子输运等特性进行按需调控。已累计在包括Adv. Mater., Adv. Funct. Mater., J. Am. Chem. Soc. Annual Review of Materials Research等在内的期刊发表SCI论文100余篇,SCI他引3500余次,H-index 28。申请(授权)发明专利20项。作国际会议邀请报告10余次。作为项目负责人主持国家自然科学基金青年基金、面上项目、优秀青年基金各一项、教育部高等学校全国优秀博士学位论文作者专项资金、教育部高等学校博士学科点专项科研基金(新教师类)等多个项目。

主要研究方向包括:

1.聚合物基复合电介质(用于超高功率脉冲功率电源等)

2.锂离子固体电解质及全固态锂离子电池的设计与制备

3.稀土掺杂氧化物光功能材料及可见光催化材料

奖励与荣誉

2016  国家杰出青年科学基金

2016  教育部“长江学者奖励计划”青年学者

2015? 中组部“万人计划”青年拔尖人才

2013? 北京市科技新星计划

2012? 国家自然科学基金委优秀青年科学基金

2011? 清华大学“基础研究青年人才计划”

2009 全国百篇优秀博士学位论文

2005 清华大学学生社会工作特等奖学金

2004 清华大学“一二九”优秀辅导员奖

学术成果

代表性论文

16 Z. H. Shen, J.J. Wang, Y. H. Lin, C.-W. Nan, L.-Q. Chen, Y. Shen*, “High-Throughput Phase-Field Design of High-Energy-Density Polymer Nanocomposites”, Adv. Mater. 2017 DOI: 10.1002/adma.201704380

15 X. Zhang, T. Liu, S. F. Zhang, X. Huang, B. Q. Xu, Y. H. Lin, L. L. Li, C.W. Nan, Y. Shen*, “Synergistic Coupling between Li6.75La3Zr1.75Ta0.25O12 and Poly(vinylidene fluoride) Induces High Ionic Conductivity, Mechanical Strength, and Thermal Stability of Solid Composite Electrolytes”, J. Am. Chem. Soc. 2017, 139, 13779

14 Y. Shen*,X. Zhang, M. Li, Y. H. Lin, C-W. Nan, “Polymer Nanocomposite Dielectrics for Electrical Energy Storage (invited review)”, National Science Review, 2017, 4, 23

13 X. Zhang, Y. Shen*, B. Xu, Q. H. Zhang, L. Gu, J. Y. Jiang, J. Ma, Y. H. Lin, C-W Nan*, “Giant Energy Density and Improved Discharge Efficiency of Solution-Processed Polymer Nanocomposites for Dielectric Energy Storage”, Adv. Mater. 2016, 28, 2055

12 Y. Shen*, Y. H. Hu, W. W. Chen, J. J. Wang, Y. H. Guan, J. W. Du, J. Ma, M. Li, Y. H. Lin, L. Q. Chen, C-W. Nan, “Modulation of topological structure induces ultrahigh energy density of graphene/Ba0.6Sr0.4TiO3nanofiber/polymer nanocomposites”, Nano Energy, 2015, 18, 176

11 Y. Shen*, Y. H. Lin, and Q. M. Zhang, “Polymer nanocomposites with high energy storage densities” (invited review), MRS Bulletin, 2015, 40, 753

10 Q. Chen, Y. Shen, S. H. Zhang, Q. M. Zhang*, “Polymer-Based Dielectrics with High Energy Storage Density” (invited review), Annual Review of Material Research, 2015, 45, 433

09 X. Zhang, Y. Shen*, Q. H. Zhang, L. Gu, Y.H. Hu, J. W. Du, Y. H. Lin. C-W. Nan, “Ultrahigh Energy Density of Polymer Nanocomposites Containing?TiO2@BaTiO3?Nanofibers by Atomic Scale Interface-Engineering”, Adv. Mater. 2015, 27, 819

08 X. Zhang, W.W. Chen, J. J. Wang, Y. Shen*, L. Gu, Y. H. Lin, C-W. Nan*, “Hierarchical interfaces induce high dielectric permittivity in nanocomposites containing?TiO2@BaTiO3?nanofibers”, Nanoscale, 2014, 6, 6701

07 P.H. Hu, Y. Shen*, Y.H. Guan, X. H. Zhang, Y. H. Lin, Q. M. Zhang*, C-W Nan “Topological-Structure Modulated Polymer Nanocomposites Exhibiting Highly Enhanced Dielectric Strength and Energy Density”, Adv. Funct. Mater.2014, 24, 3172

06 H.Y. Liu, Y. Shen, Y. Song, C-W. Nan, Y.H. Lin and X.P. Yang, “Carbon-nanotube array/polymer core-shell structured composites with high dielectric permittivity, low dielectric loss and large energy density”, Adv. Mater. 2011, 23,5104

05 Y. Shen, R. Lecki, C. G. Levi and D. R. Clarke, “Low thermal conductivity without oxygen vacancies in equi-molar YO1.5-TaO2.5 and YbO1.5-TaO2.5 stabilized tegragonal zirconia ceramics”, Acta Mater. 2010, 58, 4424-4431

04 C.-W. Nan, Y. Shen, J. Ma, “Physical properties of composites near percolation threshold” (invited review), Annual Review of Materials Research, 2010, 40, 131-151

03 Y. Shen, Y. H. Lin, and C.-W. Nan, “Interfacial effect on dielectric properties of polymer nanocomposites filled with core/shell-structured particles”, Adv. Func. Mater. 2007, 17, 2405

02 Y. Shen, Y. H. Lin, M. Li, and C.-W. Nan, “High dielectric performance of polymer composite films induced by a percolating interparticle barrier layer”, Adv. Mater. 2007, 19, 1418

01 Y. Shen, Z.-X. Yue, M. Li and C.-W. Nan, “Enhanced initial permeability and dielectric constants in a double-percolating Ni0.3Zn0.7Fe1.95O4-Ni-polymer composite”, Adv. Func. Mater. 2005, 15, 1100